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Abstract. One goal of regional-scale sample surveys is to estimate the status of a resource of interest
from a statistically drawn representative sample of that resource. An expression of status is the
frequency distribution of indicator scores capturing variability of attributes of interest. However,
extraneous variability interferes with the status description by introducing bias into the frequency
distributions. To examine this issue, we used data from a regional survey of lakes in the North-
east U.S. collected by the U.S. Environmental Protection Agency’s Environmental Monitoring and
Assessment Program (EMAP). We employ a components of variance model to identify sources of
extraneous variance pertinent to status descriptions of physical, chemical, and biological attributes
of the population of lakes in the NE. We summarize the relative magnitude of four components of
variance (lake-to-lake, year, interaction, and residual) for each indicator and illustrate how extraneous
variance biases the status descriptions. We describe a procedure that removes this bias from the
status descriptions to produce unbiased estimates and introduce a novel method for estimating the
‘cost’ of removing the bias (expressed as either increased sampling uncertainty or additional samples
needed to achieve the target precision in the absence of bias). We compare the relative magnitude
of the four variance components across the array of indicators, finding in general that conservative
chemical indicators are least affected by extraneous variance, followed by some nonconservative
indicators, with nutrient indicators most affected by extraneous variance. Intermediate were trophic
condition indicators (including sediment diatoms), fish species richness and individuals indicators,
and zooplankton taxa richness and individuals indicators. We found no clear patterns in the rel-
ative magnitude of variance components as a function of several methods of aggregating fish and
zooplankton indicators (e.g., level of taxonomy, or species richness vs. numbers of individuals).

Keywords: components of variance, lake condition indicators, status estimation

1. Introduction

One goal of surveys of ecological resources is to produce a snapshot description
of the population or natural resource type of interest. A well designed and skill-
fully implemented survey will produce an accurate representation of the status
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of the resource at the time the survey was conducted. The design of surveys, the
measurement process, and some components of natural variation affect our ability
to describe status by introducing extraneous variation and/or biases, producing a
poorer representation of the population than may be desirable.

Urquhart et al. (1998) and Larsen et al. (2001) described a variance framework
by which to organize the important sources of variation that affect estimation of
status and detection of trends in regional surveys over time. This framework iden-
tified four major variance components: (1) population variation: site-to-site, spatial,
or geographic variation in the particular attribute of interest, (2) coherent temporal
(year) variation: year-to-year variation that affects all sites equally, (3) site-by-year
interaction variation: year-to-year variation at an individual site that is not accoun-
ted for by coherent temporal variation, and (4) residual variation: the remaining
variation not accounted for by the three other components, which includes team-
to-team error, temporal variation within the sampling period, measurement error,
analytical error, and errors in data processing. For further discussion regarding the
constituents of residual variance see Larsen et al. (1995). This variance framework
is similar to one proposed by Lewis (1978) and Matthews (1990) but identifies a
coherent temporal variance component. Status descriptions intend to capture the
frequency distribution of population variation, i.e., the frequency distribution of
the site-to-site variation of an attribute of interest across the ecological resource.
Status descriptions are affected by the relative magnitude of residual variation and
site-by-year interaction variation and the absolute magnitude of coherent temporal
variation. Trend detection, conversely, is affected by the absolute magnitude of the
variance components. The effects on status descriptions and trend detection of all
of the components except coherent temporal variation, however, can be managed
through design and sample size choices. If coherent temporal variation is large, no
amount of design manipulation can overcome its effect on regional trend detection.
The only recourse is to wait a longer period of time than otherwise or to determine
what controls this component so that its effect might be removed or minimized (see
Urquhart et al., 1998).

Regional surveys of ecological condition often include measurement of an array
of attributes that focus on endpoints of interest, such as the biological assemblages,
as well as a variety of ancillary attributes that can be used to classify the resource
types or, in combination with biological assemblage information, can be employed
in associational analyses to help explain patterns in the endpoints of interest. If
properly designed, these regional surveys can provide data by which to estimate
the four variance components. In part in response to various calls for regional and
national surveys of ecological resources, the U.S. EPA designed the Environmental
Monitoring and Assessment Program (EMAP) with general goals to describe the
status of ecological resources, their trends over time, and to assess probable cause
of good or poor condition (Messer et al., 1991; Overton et al., 1991; Stevens,
1994). Other national and regional surveys of ecological resources include the
National Resources Inventory (NRI) conducted by the U.S. Natural Resource Con-
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servation Service, the Forest Inventory and Analysis (FIA) program conducted by
the U.S. Forest Service, surveys conducted by the National Agricultural Statistical
Service (NASS), the National Wetlands Inventory conducted by the U.S. Fish and
Wildlife Service, and the North American Breeding Bird Survey sponsored by
the U.S. National Biological Service (Olsen et al., 1999). Some of these surveys
characterize ecological condition of these resources or have some components that
do, while other surveys focus on harvestable crops produced by the ecosystems
being surveyed.

As part of EMAP, a survey of lakes in the NE region of the U.S. covering the
New England states and New York and New Jersey was designed and conducted
(Larsen et al., 1994). This survey will be referenced as the Northeast Lakes Survey.
The survey design allowed us to estimate the four major variance components iden-
tified above. In this paper, we present variance component estimates for the array of
lake indicators sampled as part of the Northeast Lakes Survey, compare the spatial
and temporal patterns of variability among the indicators, and consider the effect
of taxonomic hierarchy on the variability of zooplankton and fish indicators. We
discuss the influence of extraneous variation on status estimation and consider the
relative performance of the indicator groups for status estimation. We describe a
procedure that removes the bias introduced by extraneous variation and introduce
a novel approach to estimate the cost (in terms of increased uncertainty of the
status estimate, or in terms of the additional number of lakes that would have to be
sampled to achieve the same precision as if extraneous variance was negligible) of
removing the bias. We also examine relationships among the variance components
across the set of indicators to address questions such as: What insight can we gain
from the variance structure about improving field protocols for reducing extraneous
variance? Are the relative magnitudes of the variance components related to the
biological or geochemical activity of the attribute, e.g., is the variability structure of
inactive chemical properties substantially different from that of reactive chemical
properties? Are the patterns in relative magnitude related to level of taxonomic
aggregation?

2. Methods

2.1. NORTHEAST LAKES SURVEY

A representative sample of the population of lakes in the NE was surveyed during
summer months (July and August) from 1991 to 1996. The lakes were selected
using a statistical survey design (Larsen et al., 1994; Stevens, 1994) so that the con-
dition of the regional population of approximately 11,000 lakes could be inferred
from the probability sample. The survey was designed to estimate the variance
components described earlier.

At each lake in the survey, an array of physical, chemical, and biological attrib-
utes was measured, on which we examined the variability structure (attributes are
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identified in Figures 1 and 2). A complete description of these attributes and the
biological sampling methods can be found in Baker et al. (1997) and Stemberger
et al. (2001). The chemical indicators were organized into conservative and non-
conservative indicators (Horne and Goldman, 1994; Wetzel, 2001). Conservative
chemical attributes are the primary components of the ionic strength of lake water
and include the major anions and cations. They are relatively inactive and should
exhibit lowest temporal variability. Nonconservative chemical attributes are more
reactive in lakes and should exhibit greater temporal variability. Trophic condition
indicators capture lake primary production and may or may not exhibit more tem-
poral variability than nonconservative chemical indicators. Two trophic condition
indicators (Secchi depth and total phosphorus) were both measured directly and in-
ferred from sediment diatom data. The zooplankton and fish assemblage indicators
were organized into two categories: the number of individuals and the number of
species (species richness). For zooplankton three levels of taxonomic organization
were examined for both the individuals and richness attributes. All zooplankton
species (the top level) were divided into rotifer species and crustacean species to
form the second level. A third level was formed by subdividing crustacean species
into calanoid, cladoceran, and cyclopoid species. An analogous, albeit less rigor-
ous, taxonomic hierarchy was used for fish. A top level composed of all fish species
was divided into minnow species, predator species, and other species to form the
second level. For the third level predator species was subdivided into Centrarchid
species and other predators, and other species was subdivided into water column
species and benthic species. We evaluated whether temporal variation decreases as
taxonomy is aggregated as suggested in Frost et al. (1992) and Kratz et al. (1994,
1995).

2.2. VARIANCE MODEL

A linear model that describes the data for the Northeast Lakes Survey is:

Yijk = µ + Li + Tj + LTij + Iijk ,

where Yijk is the response for the kth visit at lake i during year j , µ is the overall
mean, Li is the random effect due to lake i, Tj is the random effect due to year
j , LTij is the random effect due to the interaction of lake i and year j , and Iijk

is the random effect due to residual variation for the kth visit at lake i during
year j . In this model subscript i ranges from 1 to l (the number of lakes in the
survey), subscript j ranges from 1 to t (the number of years of data), and subscript
k ranges from 0 to rij (the number of visits during year j at lake i). Let Var(Li) =
σ 2

Lake for all i, Var(Tj ) = σ 2
Year for all j , Var(LTij ) = σ 2

Interaction for all i and j , and
Var(Iijk) = σ 2

Residual for all i, j , and k. Total variance then consists of the sum of the
four components: lake variance (σ 2

Lake), year variance (σ 2
Year), interaction variance

(σ 2
Iteraction), and residual variance (σ 2

Residual). In terms of the variance model, status
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is the frequency distribution of the sum of the overall mean and the random effect
due to lake i (i.e., µ + Li) across the lakes in the survey.

The variance model assumes that linear trend is not present. For the indicat-
ors we examined, there was no evidence for linear trend during the time period
studied. When trend is present, its effect must be accounted for in the model;
otherwise, trend will be lumped with the year variance component and result in
biased estimation of that component. Linear trend is incorporated into the model
by including a continuous variable composed of centered (mean zero) values based
on the chronologic year data was collected. Two analyses then would be conducted:
the first excluding the year class variable (random effect due to year) and the second
including that variable. The first analysis provides a test for linear trend, and the
second one provides a test for nonlinear effect due to years.

For each of the indicators, the variance model was fit to the full data set from the
Northeast Lakes Survey. Estimates were obtained for the four variance components
in that model: lake variance, year variance, interaction variance, and residual vari-
ance. Details regarding the estimation procedure are provided in the Appendix. A
copy of the data used in this analysis can be obtained from D. P. Larsen.

2.3. DATA TRANSFORMATIONS

Our survey design included revisits to some of the lakes during the summer sampling
period (index window). Using the revisit data, we examined the relationship between
the variance and the mean of each indicator by plotting the log of variance versus
the log of mean, where variance and mean were calculated for each set of revisits. A
tendency for variance to increase as the mean increased indicates nonhomogeneous
residual variance for that indicator. Specifically, a slope of 2 for the log of variance
versus the log of mean is indicative of an indicator that (a) has a constant coefficient
of variation and (b) should be analyzed on the log scale. Based on this analysis, all
of the chemical indicators except pH (which is measured on the log scale) and all
of the trophic condition indicators except Secchi depth and diatom richness were
analyzed on the log scale. For both zooplankton and fish assemblages, indicators
for number of individuals were analyzed on the log scale, and indicators for species
richness were analyzed on the original scale. Note that the linear model described
previously applies to the scale on which measurements were analyzed, i.e., for
transformed indicators the linear model applies to response values measured on
the log scale.

3. Results

3.1. VARIANCE COMPONENT ESTIMATES

Variances were estimated for each of the four components and tested against zero
(t-test for difference from zero), except residual variance. Estimates with p-values
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Figure 1. Estimated percent of total variance attributable to the lake, year, interaction, and residual
components for chemical and trophic condition indicators ordered by size of residual plus interaction
variance. The lake variance component was statistically significant for all indicators. Significance of
year and interaction variance components is noted in the bar chart. By assumption for the variance
model, residual variance is always greater than zero. Acronyms for indicator and indicator group are
used in subsequent figures.
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Figure 2. Estimated percent of total variance attributable to the lake, year, interaction, and residual
components for zooplankton and fish indicators ordered by size of residual plus interaction variance.
The lake variance component was statistically significant for all indicators. Significance of year and
interaction variance components is noted in the bar chart. By assumption for the variance model,
residual variance is always greater than zero. Acronyms for indicator and indicator group are used in
subsequent figures.
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Figure 3. Percent of total variance attributable to the lake component, organized by indicator groups.
Acronyms are decoded in Figures 1 and 2.

less than or equal to 0.1 were considered different from zero. By assumption for
the variance model, residual variance is always greater than zero. For all indicators
lake variance was always greater than zero with p-values typically no larger than
0.0001. The year and interaction variances exhibited greater ranges of p-values and
in many cases were not significantly different from zero. The variance estimates are
summarized as percent of total variance for each indicator (Figures 1 and 2). Within
each indicator group, indicators are listed in order of increasing level of the sum
of the interaction and residual variance proportions. These graphs illustrate the
relative magnitude of the variance components and provide a quick comparison
across the indicators with respect to bias in status estimation. To clarify some of
the indicator patterns, indicator groups are also ordered by the percent of total
variance attributable to the lake component (Figure 3); and the percent of total
variance attributable to interaction variance is plotted against the percent attribut-
able to residual variance (Figure 4). The general patterns in variance structure are
summarized in the following sections.
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Figure 4. Percent of total variance attributable to interaction plotted against percent of total variance
attributable to residual variance for the array of indicators in Figures 1 and 2. Acronyms are decoded
in Figures 1 and 2.
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3.2. PATTERNS IN THE STRUCTURE OF VARIATION

3.2.1. Lake Variance
For the conservative and some nonconservative chemical indicators, lake variance
accounted for substantially all of the variance observed (Figures 1 and 3). Two
of the zooplankton indicators (cladoceran species and individuals) and the nutrient
ammonium were at the other end of the spectrum, for which the lake component ac-
counted for 35% or less of total variance (Figures 1–3). After the conservative and
some nonconservative chemical indicators, fish richness indicators tended to have
the highest percent of total variance attributable to the lake component (68–89%)
with fish individuals intermediate (59–82%; Figures 2 and 3). Trophic indicators
spanned a broad spectrum, from a high value for Secchi depth (about 85% attrib-
utable to lake variance) to a low value of about 58% for diatom richness (Figures 1
and 3). For the zooplankton indicators (both species richness and individuals), the
percent of total variance attributable to lake was 51 to 60% (Figures 2 and 3) with
a surprising consistency among both the individuals and richness indicators.

3.2.2. Year Variance
Indicators for which year variance was significantly different from zero are noted
in Figures 1 and 2. For the indicators we examined, year variance accounted for
none or a small percentage (less than 8%) of total variance. Year variance was
zero for three groups: zooplankton individuals, fish individuals, and fish richness.
For those indicators with nonzero year variance, the magnitude is inconsequential
in the context of its influence on status estimation. However, see Urquhart et al.
(1998) and Urquhart and Kincaid (1999) for insight into the effect of year variance
on detection of trends.

3.2.3. Interaction and Residual Variance
Across all indicators, a consistent pattern emerged, with few exceptions, in which
residual variance accounted for more (in some cases, substantially more) of the
total variance than did interaction variance (Figure 4). That is, variability from
all sources within the sampling index window (residual variance) was consistently
higher than variability among years. For all of the conservative chemical indicat-
ors and four of the nonconservative chemical indicators, neither residual variance
nor interaction variance accounted for much of total variance, so their magnitude
compared to each other is of little concern. For the other three nonconservative
chemical indicators (which include the biologically active nutrients ammonium
and nitrate) both residual variance (13–43%) and interaction variance (11–31%)
exceeded 10% of total variance. Residual variance for trophic condition indicators
ranged from 13 to 29%, but interaction variance for those indicators was less than
10% of total variance. Residual variance for indicators of zooplankton individuals
(30–71%) and zooplankton species richness (29–50%) accounted for a substantial
part of total variance, whereas interaction variance exceeded 10% of total variance
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for half of the zooplankton indicators. For fish indicators, residual variance ranged
from 16 to 35% for individuals and from 11 to 31% for species richness, whereas
interaction variance exceeded 10% of total variance for only two fish individuals
indicators and was close to zero for all of the fish species richness indicators.

Indicators for which interaction variance was significantly different from zero
are noted in Figures 1 and 2. All of the conservative chemical indicators, all of
the nonconservative chemical indicators except pH, but only three of the trophic
condition indicators had significant interaction variance. For zooplankton, all of
the indicators for individuals except cladocerans and half of the species richness
indicators had estimates of interaction variance that were significantly different
from zero. Four of the indicators for fish individuals but none of the fish species
richness indicators were significantly different from zero.

3.2.4. Taxonomic Hierarchy
The effect of our hierarchical groupings on zooplankton and fish indicators was
inconsistent (Figure 5). For indicators of zooplankton individuals and species rich-
ness, the percent of total variance attributable to the lake variance component
ranged between 50 and 60% regardless of taxonomic level with the exception
that cladocerans did not follow this pattern. Conversely, for indicators of fish in-
dividuals, there was a tendency for the percent of total variance attributable to the
lake component to increase at finer levels of taxonomy; whereas no clear pattern
emerged for fish species richness indicators.

With respect to the percent of total variance attributable to the residual compon-
ent, proportional variance for indicators of zooplankton individuals tended to de-
cline slightly, except for cladocerans, which increased substantially. For zooplank-
ton species richness indicators, however, a clear pattern of increase with finer levels
of the hierarchy occurred. For indicators of fish individuals, there was a pattern of
decline with finer levels of the hierarchy but a tendency for variance to increase
for fish species richness indicators. For fish, since the other variance components
(year and interaction) typically accounted for a small percentage of total variance,
the lake and residual variance components provided ‘mirror images’.

4. Discussion

4.1. INFLUENCE OF EXTRANEOUS VARIATION ON STATUS ESTIMATION

The term ‘status’ is often used in a generic way to convey a snapshot of the condi-
tion of a resource at an instant in time, a slice through time. For many resource
types, however, obtaining a slice through time is not feasible, and instead the
snapshot reflects an average during a specified time period, an index window. In
this case, each visit to a sample site and the measurements taken during that visit
can be considered an estimate of the average for that sample site during the index
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Figure 5. Percent of total variance attributable to the lake or residual components as a function of
taxonomic hierarchy for the zooplankton and fish individuals and richness indicators.

window. One expression of status of the target population is the frequency distri-
bution of the set of average scores for an attribute of interest across all elements
of the population, summarized as the population cumulative distribution function
(CDF), e.g., Figure 6. Well designed sample surveys allow us to infer the popu-
lation’s CDF by obtaining a set of measurements on a properly selected sample
of the population elements. However, a variety of ‘errors’ arise that interfere with
population description or inference.

Overton (1989) characterizes the set of nonsampling variable errors as ‘ex-
traneous’ and, with the exception of rounding errors, considers them ‘measurement
errors’. This concept of measurement errors differs from analytical measurement
errors estimated by replicate measurements in that it includes some temporal and
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Figure 6. (Top) The bias introduced into status descriptions (cumulative distribution functions) by
extraneous variance for a Normal distribution to which various levels of extraneous variance have
been introduced. Bias is 0 at the mean for Normal distributions, and maximum at ± one standard
deviation from the mean. The true distribution (solid line) is spread further and further as extraneous
variance increases. (Bottom) The pattern of bias introduced by extraneous variation is clear in this
panel.
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spatial components. Collectively, these measurement errors create bias in the CDF.
Other authors merely call these errors measurement errors or replication errors. In
this paper we use the term extraneous variance to reference these ‘measurement er-
rors’. We classify residual variance and interaction variance as extraneous variance
and evaluate the impact of this variance on estimation of status of the population.

Overton (1989) evaluated the relationship between the magnitude of extraneous
variance and bias in the CDF. Extraneous variance spreads the CDF resulting in
biased estimation of status (Figure 6). In the top panel of Figure 6 the Normal
distribution is used to simulate the CDF for species richness of, say, fish in a
finite population of lakes. The solid line is the CDF (i.e., the status description)
in the absence of extraneous variance, which is the true status description of the
population. The dashed lines are the CDFs in the presence of extraneous vari-
ance, where extraneous variance is expressed as percent of total variance. As the
amount of extraneous variance increases, bias in some parts of the CDF increases
(see the following discussion). For example, extraneous variance of 10% results
in a slight overestimate of the percent of the resource less than 12 (10% versus
9%), whereas extraneous variance of 50% results in a large overestimate of that
percentage (17%). For a given level of extraneous variance, however, bias is not
constant across the CDF. At the median, for example, the CDF is not affected
by extraneous variance. For the Normal distribution, bias reaches a maximum at
± 1 standard deviation from the mean, illustrated in lower panel of Figure 6. For
asymmetrical distributions, Overton (1989) noted that small levels of extraneous
variance can still produce significant bias in the CDF. Specifically, he stated that,
for a population with an exponential distribution, there is the potential for a small
level of extraneous variance to produce substantial bias in the lower tail of the CDF.

The discussion above centers around a description of status within a particular
year. However, as referenced in the description of the variance model, it is also reas-
onable to refer to status as the frequency distribution of fundamental differences
among lakes, in which case the CDF contains biases introduced by the residual
and interaction components of variation. Taken together, these sources of variation
confound the description of the true distribution of differences among lakes.

Performance of the indicator groups regarding status estimation is illustrated
in Figure 3, which displays proportion of the lake component of variance. The
conservative chemical indicators performed best with respect to status estimation.
Excluding dissolved inorganic carbon and potassium, which exhibited slighted
lower levels of lake variance (in the range 88–90%), the conservative chemical
indicators had lake variance of 98% or higher. The nonconservative chemical in-
dicators exhibited a wide range of lake variance. Four of those indicators (color,
organic carbon, pH, and sulfate) performed similarly to dissolved inorganic car-
bon and potassium, but the nutrient indicators (ammonium and nitrate) had low
levels of lake variance. After the conservative chemical indicators and the non-
conservative chemical indicators listed previously, the fish indicators performed
best. Among fish indicators, the richness indicators were slightly better than the
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Figure 7. The cost of deconvolution (correcting a CDF for biases introduced by extraneous vari-
ance) can be expressed as the average increase in width of the confidence bounds of the CDF, here
expressed as a function of the magnitude of extraneous variance for the array of lake indicators
summarized in this study. Cost can also be expressed in terms of the additional sampling necessary
to achieve the same precision if extraneous variance were 0, here illustrated for a case of a random
sample of 50 lakes from a large population of lakes. A robust regression line has been fit to the
points to illustrate the general pattern. Indicators with extraneous variance exceeding 50% (total of
three indicators) were excluded from calculation of the regression line. Acronyms are decoded in
Figures 1 and 2.

individuals indicators. Performance of the trophic condition indicators was similar
to the fish individuals indicators. Zooplankton indicators performed the worst in
terms of status estimation. Lake variance for zooplankton indicators (both richness
and individuals indicators) occurred within a narrow range except for cladoceran
species, which exhibited substantially lower levels of lake variance.

When the residual and interaction components of variation are sufficiently large
to introduce bias in the estimated CDF, that bias can be removed by incorporating
the estimated residual and interaction variation into a process called deconvolu-
tion (e.g., Gaffy, 1959). However, there is a cost associated with deconvolution:
an increase in the sampling uncertainty of population inferences from a sample.
Sampling uncertainty directly affects the precision with which a quantity (in this
case the CDF) is estimated, i.e., increased sampling uncertainty means decreased
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precision. The increase in uncertainty of population inferences resulting from de-
convolution is illustrated in Figure 7, which plots cost of deconvolution against
percent extraneous variance for each of the lake indicators. Cost is assessed two
ways: (1) the average increase in width of the confidence bounds of the CDF and
(2) the approximate increase in sample size needed to achieve the same sampling
precision that would be achieved if extraneous variance were 0. To illustrate the
first type of cost, suppose the confidence bound at a chosen value was 20±5% and
the cost was 4%, then deconvolution increased width of the confidence bound from
10 to 14%, producing a confidence bound of 20±7%. The second type of cost is
illustrated in Figure 7 under the assumption that a random sample of 50 lakes has
been selected from a large population of lakes. A clear pattern of increasing cost
as the percent of extraneous variance increases is evident. A robust regression line
is included in Figure 7 to aid in visualizing the overall pattern. Due to the lack
of indicators with extraneous variance in excess of 50%, three indicators with high
levels of extraneous variance were excluded from calculation of the regression line.

Year variance affects the status estimate in a slightly different way. Whereas the
effect of extraneous variation is to ‘rotate the CDF in a pinwheel fashion around
the mean for Normal distributions, year variance shifts the entire CDF a constant
amount. The size of each year’s shift is dependent on the magnitude of the year
effect (see the variance model). Bias introduced by year variance thus can be re-
moved by estimating the year effect for a particular year (e.g., Searle et al., 1992)
and subtracting that value from the CDF estimate. As noted in the Results Section,
the year effect typically was minor for the indicators we examined.

4.2. INTERPRETATION OF RESIDUAL AND INTERACTION VARIANCE

Although careful attention to the selection of sites and the pattern of visits to
sites within and across years is an important aspect of designing and modifying
surveys (Urquhart et al., 1998; Urquhart and Kincaid, 1999), equally important
is evaluation of the structure of variation. An evaluation of the latter can be ap-
plied to improving sample collection and processing protocols with the goal to
reduce bias. Of particular importance is residual variation: can its magnitude be
reduced by changes in collection or measurement protocols? For example, the fish
richness indicators are characterized by a moderate amount of residual variation.
Within a particular lake, it is unlikely that the number of species resident during
the index window changed; it is more likely that not all the species present were
captured (Vaux et al., 2000). Therefore, residual variation probably reflects the
ability to capture the resident species when the lake is sampled. This is not an
unreasonable assumption given the challenges of sampling fish in multiple habitats
of lakes using multiple kinds of gear located in various parts of the lake. Thus,
likely reduction of residual variation would come from improvement in the species
collection methods.
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Similarly, sediment diatom richness is characterized by moderate residual vari-
ation. Here again, it is unlikely that the composition of diatoms collected in the top
centimeter of lake sediment would change substantially during the index window
(Cumming et al., 1992; Dixit et al., 1999). The surface centimeter of sediment
likely contains diatoms representing several years accumulation, so many new
species are unlikely to settle during the index window of a particular year. The
results presented here are based on a single diatom core near the deepest part of the
lake (Dixit et al., 1999). Residual variation estimated by taking cores in the same
lake at different times during the index window likely represents spatial variation in
the composition of sediment diatoms. Reduction in residual variation might result
from sampling at several locations to better estimate an average condition during
the index window.

In contrast, indicators like total phosphorus, chlorophyll a, nutrients, and zo-
oplankton individuals, can vary substantially within the index window (compared
to the fish and sediment diatom richness indicators). The consequent moderate to
high residual variation summarized here could be managed by increased sampling
during each visit to the lake but is more likely to be sensitive to increasing the
number of times a lake is visited during the index window to obtain a more pre-
cise estimate of the mean during this period. Of course, the improvement derived
by revisiting lakes must be balanced by the cost of not visiting other lakes. See
Urquhart et al. (1998) for an examination of the tradeoffs between revisiting sites
or visiting additional sites in a survey. Stemberger et al. (2001) also describe how
spatial partitioning of the lake population (for example, by ecological regions) can
be useful for managing some of the components of variation.

Interaction variance is a natural feature of these systems, and as such is not
subject to management by changes in sampling protocols as residual variation
might be. Revisiting a sufficient number of lakes to estimate its magnitude, then
using a process like deconvolution to remove its effects on status estimation is the
primary option for managing this component of variation with respect to status
estimation. For most of the lake indicators described here, this component of vari-
ance is relatively small compared with residual variation (to a lesser degree) and
lake variation (to a greater degree), so the cost of removing its effect would be
relatively low.

4.3. VARIANCE PATTERNS

The patterns of variation across indicator groups are what is expected from an
evaluation of biological or geochemical activity of the indicators (Figures 1 and
2). Almost all of the variation among the conservative chemical indicators is as-
sociated with lake-to-lake differences; very little variation is nonspatial. A few of
the nonconservative chemical indicators (color, organic carbon, pH, and sulfate)
have nearly the same pattern but with slightly increased interaction and residual
variation. On the other hand, nutrients (ammonium and nitrate) can be expected to
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be quite variable, as they are consumed and recycled rapidly during the summer
sampling window and can be affected from year to year by local climate. Con-
sequently, the nutrient indicators exhibit high percentages of total variation that are
residual and interaction.

Of the trophic condition indicators, lake transparency measured with a Secchi
disk contains the highest percent of total variance associated with the spatial com-
ponent. Therefore, from the perspective of estimating the trophic status of lakes,
this indicator would provide the least biased estimation, provided that transparency
in the set of lakes under consideration was controlled by algal growth and not by
nonalgal fine sediments or other factors. This is perhaps fortuitous because its use is
inexpensive and the protocol can easily be taught to nonprofessionals (Klang, 1997;
Lee et al., 1997). In fact, extensive volunteer networks use this tool to evaluate lake
trophic condition in north-temperate lakes, and relationships between this indicator
and other trophic condition indicators are well documented (Carlson, 1977).

Frost et al. (1992) and Kratz et al. (1994, 1995) indicate that variability can be
associated with level of taxonomic aggregation, i.e., species level is more variable
than guild level which is more variable than major groupings. However, our results
indicate that aggregation produces no clear pattern with respect to proportioning
total variation. For example, for zooplankton at the highest level of aggregation,
nearly the same percent of total variation is attributable to the lake component for
both richness and individuals indicators. The number of individuals is clearly more
variable than the much more aggregated number of species; however, on a relative
scale, the decomposition of total variation is nearly the same for both individuals
and richness. For fish, patterns also are inconsistent. For example, splitting total fish
richness into minnows, predators, and other species decreases the percent of total
variation associated with spatial variation for predators but does not affect the per-
cent for minnows or other species. Splitting predators to a finer level (centrarchids
and other predators) makes little difference.
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Appendix: Variance Component Estimation Procedure

The method of moments procedure was used to calculate variance component es-
timates. For a through discussion of that procedure, see Searle (1971) and Searle
et al. (1992); a brief description follows. The procedure first is summarized for
an equal probability sampling design and then is generalized to handle an unequal
probability design. As an initial step, an analysis of variance was conducted. The
analysis of variance provided an observed mean square value for each of the factors
in the model. The next step was to calculate the expected mean square for each
factor. The expected mean squares express each model factor as a linear combin-
ation of the variance components. The observed mean squares were then equated
to the expected mean squares, and the resulting series of equations was solved to
produce the variance component estimates. Note that many statistical programs,
e.g., SAS, are capable of calculating the expected mean squares. We used a SAS
Type III analysis to obtain the observed and expected mean squares.

Since the EMAP Northeast Lakes Survey was an unequal probability sampling
design, we wanted to incorporate the sample weights into the estimation proced-
ure. We accomplished that goal by including the inverse of the sample inclusion
probabilities, i.e., the sample expansion factors, as weights in PROC GLM of
SAS. The impact of doing a weighted analysis in PROC GLM is that all of the
observed mean squares are inflated by the weights. For all of the expected mean
squares except the one for residual error (our residual variance), the coefficients
for the expected mean squares are inflated by the weights. Thus, for all variance
components except the one for residual variance, valid estimates are obtained from
the weighted analysis. For residual variance the single coefficient in the expected
mean square is unaffected by the weights, and so a valid estimate is not obtained.
Therefore, the following estimator was used to estimate residual variance:

σ̂ 2
Residual = 1

n − p




n

n∑
i=1

wi

(
yi − ŷi

)2

n∑
i=1

wi




,

where n is the sample size, p is the number of parameters in the model, wi are
the sample weights, yi are the response values, and ŷi are the predicted response
values. For an equal probability design, this estimator reduces to the usual estimator
for residual error.
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